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1 Introduction
I will use this white paper to lead a discussion of how Fractal Trees compare to Log-
Structured Merge Trees.

This paper explains the advantages of Fractal-Tree R© indexing compared to Log-Structured
Merge (LSM) trees. LSM trees were originally described by O’Neil [13], and have been
implemented in several systems including [8–10,12,14,17]. Fractal-Tree indexes are based
on research on streaming B trees [4], which drew in part on earlier algorithmic work on
buffered repository trees [6, 7]. Fractal-Tree indexes appear in Tokutek’s database prod-
ucts [16].

I’ll compare these data structures both using asymptotic analysis, and for a “typical”
database of 10TB of data on a machine with 64GB of RAM, for several measures of
quality: write amplification, read amplification, and space amplification. I’ll try to express
these in terms of the block size B, the fanout k, the memory size M, and the database size
N, although it can be difficult to compare different data structures because, for example,
they choose different fanouts depending on their characteristics.

2 The Objective
This section describes the quality metrics I’ll be using, which include write amplification,
read amplification, and space amplification.
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2.1 Write Amplification
Write amplification is the amount of data written to storage compared to the amount of data
that the application wrote. LSM trees and Fractal-Tree indexes both provide significant
advantages over traditional B-trees. For example, if a database row contains 100 bytes,
and a B tree such as InnoDB employs 16KiB pages [11], then the B tree may perform
16KiB of I/O to write a single 100-byte row, for a write amplification of 160, compared to
a write amplification of 30 to 70 for the other data structures.

This simple measure of write amplification understates the advantage of LSM trees
and Fractal Trees, however, since a write amplification of 160 with 16KiB blocks, is an
order of magnitude worse than the same write amplification would be with 1MiB blocks
(at least for rotating disks). Since the goal of this paper is to compare LSM trees to Fractal
Trees, I won’t worry too much about the fact this metric makes B trees look better than
they are.

Write amplification is a problem on both rotating disks and solid-state disk (SSD), but
for different reasons. As I mentioned above, for rotating disks, write amplification does
not tell the whole story, because many small writes are slower than one big write of the
same total number of bytes. But both LSM trees and Fractal-Tree indexes perform large
writes, for which all we care about is bandwidth. Disks often have a limited amount of
bandwidth (say, 100MB/s per drive).

For SSD, write amplification is a problem because flash-based SSD’s can be written
to only a finite number of times. A B tree performing random updates can easily use up
a flash. Lower write amplification can help to reduce cost because you can buy cheaper
flash (with fewer write cycles), and you may be able to provision a higher fraction of your
flash storage to store useful data since the write blocks are larger.

Larger write blocks help SSD for the following reasons. The Flash Translation Layer
(FTL) of a flash-based solid-state disk (SSD) can increase the write amplification experi-
enced by the flash memory inside the SSD. For example, for an SSD provisioned at 80%
utilization, with an erase-block size of 256KiB and B-tree blocks of 16KiB under a work-
load with uniform random writes, the FTL induces another factor of 5 of write amplifica-
tion. In general, if the SSD is provisioned with a fraction r of its storage made available to
the user, and blocks are written randomly, and if the written blocks are much smaller than
the erase-block size, then the write amplification induced by the FTL is another 1/(1− r).

Compression can further reduce write amplification. Reducing the uncompressed write
amplification can reduce the CPU load, and hence improve performance, by reducing the
amount of data that needs to be compressed. Using lightweight compressors can mitigate
this cost, at the cost of reduced compression factors, and hence higher write amplifica-
tion. So lower uncompressed write amplification can enable the use of a more expensive
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compressor that, in turn, further lowers the write amplification seen at the disk.
Depending on the data structure, write amplification can be affected by the applica-

tion’s write pattern. For example, writing random uniformly distributed keys (e.g., as in
iiBench [15]) will induce different write amplification than writing skewed keys with a
Zipfian distribution [18] (e.g., as in LinkBench [2]).

2.2 Read Amplification
Read amplification is the number of I/O’s required to satisfy a particular query. There are
two important cases for read amplification: cold cache, and warm cache. For example, for
a B tree in the cold-cache case, a point query requires O(logB N) I/O’s, whereas for most
reasonable configurations of RAM and disk, in the warm-cache case the internal nodes of
the B tree are cached, and so a B tree requires at most one I/O per query. The choice of
uniform random vs. skewed can also affect read amplification

Some reads are performed for point queries, where we are simply looking up a partic-
ular key. Some reads are performed for range queries, where we want all key-value pairs
for which the key lies in a particular range. These two problems are different because, for
example, Bloom filters [5] can help with point queries, but do not seem to help with range
queries.

Note that the units are different for write amplification and read amplification. Write
amplification measures how much more data is written than the application thought it was
writing, whereas read amplification counts the number of I/O’s to perform a read.

2.3 Space Amplification
The space required by a data structure can be inflated by fragmentation or requirements
for temporary copies of the data. For example, B trees typically achieve only 75% space
utilization due to fragmentation inside the B-tree blocks. Thus B trees suffer a space
amplification of 4/3.

3 B Trees
Before diving into LSM trees and fractal trees, I’ll first quickly review B trees. A B-tree
index is a search tree in which every node of the tree can have many children.1 A B tree

1There are many flavors of B trees, including, for example, plain B trees, B+ trees, and B∗ trees. It
turns out that to a first approximation, the differences between these flavors is unimportant. The trees that
I’ll describe are B+ trees, but I’ll just call them “B trees”. Unfortunately the literature on B trees employs
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Figure 1: A B tree (adapted from [3]) containing the first twenty prime numbers. The
internal nodes of the tree are shaded yellow, and contain pivot keys, whereas the leaf
nodes are shaded pink and contain only data records. The root node is shown at the top of
the tree, and in this case happens to contain a single pivot (19), indicating that records with
key k where k ≤ 19 are stored in the first child, and records with key k where k > 19 are
stored in the second child. The first child contains two pivot keys (7 and 13), indicating
that records with key k where k ≤ 7 is stored in the first child, those with 7 < k ≤ 13 are
stored in the second child, and those with k > 13 are stored in the third child. The leftmost
leaf node contains four values (2, 3, 5, and 7).

contains two kinds of nodes, leaf nodes, and internal nodes. A leaf node contains data
records and has no children, whereas an internal node has children and pivot keys, but no
data records. There is a single root node, which has no parent. Every other node has a
parent. An example B tree appears in Figure 1.

Typically, B trees are organized to have uniform depth (that is, the distance from the
root a leaf node is same for every leaf node).

How big are the nodes of a B tree? The theory literature (see, for example, the Disk-
Access Model (DAM) of [1]) usually assumes that the underlying disk drives employ a
fixed-sized block, and sets the block size of the B tree to match that device block size. To
simplify the analysis, the theory assumes that all blocks are equally expensive to access
(real disks exhibit locality between bocks, and furthermore the blocks near the outer edge
of an disk are faster than the ones near the inner edge). The theory further assumes that

inconsistent terminology, so I’ll have to explain what I mean by terms such as “leaf”.
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there is no such thing as a small block or a large block, and that all we need to do is count
the number of blocks fetched from and stored to disk. The theory denotes the block size
of the tree as B, and assumes that keys, pointers, and records are constant sized, so that
each internal node contains O(B) children and each leaf node contains O(B) data records.
(The root node is a special case, and can be nearly empty in some situations.) In spite of
all these unrealistic assumptions, the DAM theory works very well. In the DAM model,
the depth of a B tree is

O(logB N/B) = O
(

logN/B
logB

)
,

where N is the size of the database.
How expensive is it to search or insert data records? The number of disk I/O’s required

to search for an arbitrary key is at most O(logB N/B), since that’s the depth of the tree.
An insertion also requires O(logB N/B) disk I/O’s. In a system with cache, once the cache
is warmed up all the internal nodes of the tree are typically cached, and so a search or
insertion may cost only one I/O.

One common misconception that I have heard is that insertions are expensive because
maintaining the tree’s balance is difficult. (To maintain tree’s “balance” includes main-
taining the invariant that the tree has uniform depth and every node has O(B) children.)
Although maintaining B-tree balance is tricky (the code to do so is often quite complex),
almost no additional I/O’s are incurred to keep the tree balanced, however.

In practice, most engineered B trees choose a block size B measured in bytes. The keys
and data records are of various sizes, so real B trees typically simply fill up their nodes
as much as possible. That means that the number of children at each node (and hence the
depth of the tree) depends on the sizes of the pivot keys.

What is the write amplification for a B tree? For the worst-case insertion workloads,
every insertion requires writing the leaf block containing the record, so the write amplifi-
cation is B. You might get lucky and write two or more records into the same block before
evicting the block from the cache, but if your database is substantially larger than your
cache, and you perform random insertions, most insertions incur a full block write. To
understand how bad this write amplification is, we need to examine how block sizes are
chosen for B-trees.

The block size for B trees varies quite a bit depending on the implementation: Many
databases employ 4KiB blocks or 16KiB blocks, but some use larger blocks. Databases
that perform many writes seem to favor small block sizes, whereas databases that per-
form mostly reads seem to favor large block sizes, sometimes going up to a mgabyte or
more. This is because large blocks worsen the write amplification, but improve search
performance by making the tree shallower.

It turns out that 4KiB or 16KiB is far too small to get good performance on rotating
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Figure 2: An FT index containing the first twenty numbers (except that 23, 31, 41, and 43
are missing). This data structure contains buffers in the internal nodes (shown in blue). In
the FT index shown here, the buffers are empty.

disk, since for a typical disk, the seek time might be 5ms and the transfer rate might be
100MB/s. If you write 4KiB blocks, you will spend 5ms seeking, and 0.04ms transferring
data, thus achieving only 819KB/s transfer rates on a disk that should have been able to
do 100MB/s. To make good use of the disk, we really need the block size to be at the
large end of the range (close to a megabyte). B trees thus force database engineers into a
unpleasant corner.

4 Fractal Tree Indexes
Having discussed B trees, I’ll now discuss a look at Fractal Tree indexes, which I’ll ab-
brevate as FT indexes. The idea behind FT indexes is to maintain a B tree in which each
internal node of the tree contains a buffer.

An example FT index is shown in Figure 2. This tree is very similar to the B tree of
Figure 1, except it has extra buffers, which happen to be empty.

Figure 3 shows how an FT index uses the buffers. When a data record is inserted into
the tree, instead of traversing the entire tree the way a B tree would, we simply insert the
data record into the buffer at the root of the tree.

Eventually the root buffer will fill up with new data records. At that point the FT index
copies the inserted records down a level of the tree. Eventually the newly inserted records
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Figure 3: The FT index of Figure 2 after we have inserted 23, 41, and 43. Those newly
inserted records now appear in the buffer at the root of the tree.

will reach the leaves, at which point they are simply stored in a leaf node as a B tree would
store them.

The data records descending through the buffers of the tree can be thought of as mes-
sages that say “insert this record”. FT indexes can use other kinds of of messages, such as
messages that delete a record, or messages that update a record.

Since we are using part of the B-tree internal node for a buffer, that means there is less
space for pivot keys. How much space should we allocate for the buffer, and how much
for the children.

To make the analysis work out in theory, we can set the number of children k =
√

B.
(Recall, for a B-tree, k = B).

In practice we might set k = 10 and the block size B to 64KB. Internal nodes can be
bigger if the buffers are full. Several leaf nodes are grouped together into a single 4MB
block for writing, so that for writes the block size is 4MB (before compression) and reads
are 64KB (before compression).

FT write amplification can be analyzed as follows. In the worst case, each object moves
down the tree, once per level. Moving B/k objects down the tree incurs the write cost of
B, for write amplification per level of k, and a total write amplification of O(k logk N/B).
Skewed writes can achieve substantially better write amplification, sometimes ending up
with performance as good as O(logk N/B).

Read cost is O(logk N/B) for the cold-cache case, and typically one I/O for the warm
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Figure 4: The FT index of Figure 3 after we have inserted 31, and the tree has moved 41
and 43 into a child of the root.

cache case, both for point queries and range queries.

5 LSM Trees
The idea behind LSM trees is to maintain a collection of sorted runs of data, each run
containing key-value pairs with the keys sorted in ascending order. In some systems a
run is managed as a single file, and in some systems a run is managed as a collection
of smaller files. Some systems do both: For example, Cassandra’s leveled compaction
strategy organizes runs into files that are at most 5MB by default, whereas their size-tiered
compaction strategy uses a single file per run [9].

Figure 5 shows a simple LSM tree with three runs in which two runs (one of length 4
and one of length 6) are merged into one run of length 10, leaving the third run unchanged.

Given a sorted run, one way to perform a query is to perform binary search on the data.
Such a query requires O(logN/B) I/O’s in a cold cache, where N is the database size and
B is the read block size. That is a lot of I/Os: For a 10TB database with a 1MB read-block
size, the cold-cache read cost is about 26 reads. Changing the read-block size might help,
but smaller reads would require more I/Os and larger reads are more expensive, and my
calculations suggest that a 1MB read-block size is close to optimal for rotating disks. The
warm-cache case can be much better: If the system can keep 100 million keys in main
memory, then it can decide which block to read and read the right block with a single I/O.
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8 28 29 30
9 12 15 17 23 27
1 3 5 7 11 13 19 21 25 31

⇒ 8 9 12 15 17 23 27 28 29 30
1 3 5 7 11 13 19 21 25 31

Figure 5: An LSM with three runs (left) in which two runs are merged (right). The runs
being merged are rendered in green.

If there are multiple runs, then a query may require a single I/O for each run. In
practice, the smaller runs are typically cached. To get a better handle on the tradeoffs
between reads and writes, we need to look closer at how LSM trees handle compaction.
LSM trees never overwrite old data runs. Instead, they write all updates into new runs.
Over time, many versions of a row may exist in different runs, and finding a row could
involve looking in all those runs. To maintain good read performance compaction merges
two or more runs together into a single run. This merging can be done at disk bandwidth,
since the various runs being merged can be read sequentially, and the new run can be
written sequentially.

LSM trees come in two flavors: Leveled, and Size-tiered. I’ll analyze each flavor
separately in the rest of this section.

5.1 Leveled LSM Trees
In leveled LSM trees, data is organized into levels. Each level contains one run. Data
starts in level 0, then gets merged into the level 1 run. Eventually the level 1 run is merged
into the level 2 run, and so forth. Each level is constrained in its sizes. For example, in
some systems, Level i contains between 10i−1 and 10i megabytes. So Level 1 would be
between 1MB and 10MB, Level 2 would be between 10MB and 100MB, Level 3 would
be up to 1GB, and so forth. So a 10TB database would contains 7 levels. Some systems
use different growth factors. I’ll analyze for the general case and for the particular case in
which the growth factor equals 10.

Figure 6 shows a leveled LSM with runs that grow by a factor of 5. A run of length 5
is shown being merged into a run of length 15.

In the single-file-per-run case, merging a run from one level into the next requires
reading both runs, and writing a new run. This merging can require temporary storage
which is twice the size of the database.

In the multiple-files-per-run case, merging can be performed by reading one file at a
time from the first level, and merging it into the relevant files in the second run. In the
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⇓

Figure 6: A leveled LSM with runs that grow by a factor of 10. Before merging two rows
(above) and after (below).

worst case, this approach can also require twice the space, since one could have a single
file that contains a row of data destined to be merged with each file from the next level.

Leveled compaction is implemented by Cassandra [9], LevelDB [12], and RocksDB
[14], and was also the approach in the original LSM paper [13].

We can analyze leveled LSM trees as follows. If the growth factor is k and the smallest
level is a single file of size B, then the number of levels is Θ(logk N/B). Data must be
moved out of each level once, but data from a given level is merged repeatedly with data
from the previous level. On average, after being first written into a level, each data item
is remerged back into the same level about k/2 times. So the total write amplification is
Θ(k logk N/B).

To perform a short range query in the cold cache case, we must perform a binary search
on each of the runs. The biggest run is O(N), thus requires O(logN/B I/O’s. The next run
is size O(N/k), and so requires O(log(N/(kB))) = O((logN/B)− logk) I/O’s. The next
run requires O(log(N/(k2B))) = O((logN/B)− 2logk) I/O’s. The total number of I/O’s
is thus, asymptotically,

R = (logN/B)+(logN/B− logk)+(logN/B−2logk)+ · · ·+1

which has solution R = O((logN/B)(logk N/B)) = O((log2 N/B)/ logk). For our hypo-
thetical 10TB database, that comes out to about 93 reads for a cold cache.

For a warm cache we need one read per level that doesn’t fit in main memory. For a
64GB machine and a 10TB database, all but the last three levels fit in main memory, so
the system requires 3 reads. That factor of 3 compares unfavorably with a B tree’s single
read for a short range query.

Point queries can run more efficiently by adding a Bloom filter to each run, avoiding
the need to do a disk I/O for levels that do not actually contain the row of interest. In most
cases, this means that a point query requires one read.
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⇒

Figure 7: A size-tiered LSM with runs that grow by a factor of 4. There can be up to 4
runs of each size. Before merging four rows (left) and after (right).

5.2 Size-tiered LSM Trees
A second approach to LSM maintenance is called size-tiered compaction. For size-tiered
systems, the runs are implemented each with a single file, and the runs are not a fixed size
either for analysis nor in practice. The size-tiered files tend to get larger as they get older.

Figure 7 shows a size-tiered LSM being compacted. Four runs of length 4 are com-
bined to make a single run of length 16.

A typical approach is used in Cassandra [9], where they find four runs that are about
the same size, and merge them together to make a larger run. For a 10TB database, one
could have a large run that’s near 10TB, four runs which are between 500GB and 2.5TB,
four runs that are between 100GB and 500GB, and so forth.

The worst-case write amplification for this system can be analyzed as follows. If the
fanout is k (k = 4 for Cassandra, for example) there are O(logk N/B) levels. Data is written
to each level once. So writes incur O(logk N/B) write amplification. This is substantially
less than the O(k logk N/B) write amplification of leveled LSM trees even though k is typ-
ically smaller for size-tiered: making the factor of logk N/B larger (by making k smaller)
is not nearly as important as multiplying the number of writes by k.

Reads can require checking up to O(k logk N/B) files. For the cold-cache case, reading
the files requires O(k(log2 N/B)/ logk) which is k times more than the leveled approach
since one must read k files at each level. This works out to 17 I/Os for our hypothetical
100TB database with 64GB RAM.

For the warm cache case, for our hypothetical 10TB database on a 64GB machine,
there can be 13 or more files that are bigger than main memory. For example, one might
find a situation in which there are

• 1 run of size 4TB,

• 4 runs of size 1TB,

• 4 runs of size 250GB, and
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• 4 runs of size 65GB,

for a total of 13 files. Asymptotically that’s O(k logk N/M) files, where M is the memory
size. A bloom filter can avoid most of those reads in the case of a point query, but not for
range queries.

The multi-file leveled approach used by LevelDB and RocksDB has a space amplifica-
tion of about 1.1 since about 90% of the data is the highest level. Size-tiered compaction
does not seem able to get space amplification that low. RocksDB is configured by default
to have space amplification of 3, but it may be possible to reduce that at the cost of one
hurting read amplification or write amplification.

Size-tiered compaction is implemented by Cassandra [9], WiredTiger [17], HBase
[10], and RocksDB [14]. The Bigtable paper [8] did not describe their LSM carefully
enough to know for sure: it looks like a size-tiered compaction scheme, which is confus-
ing since LevelDB, which is often described as an open-source version of the same data
structure, is leveled.

Like for file-per-run leveled LSM’s, one potential problem is that the system may re-
quire temporary storage equal to the size of the database to perform compaction.

6 Summary
Figure 8 shows a summary of the various kinds of amplification.

• FT indexes provide excellent write amplification, read amplification, and space am-
plification, both asymptotically and in practice.

• Leveled LSM’s can basically match the write amplification of FT indexes. For
many-files-per-run Leveled LSM’s do pretty well for space amplification, but not
so well for file-per-run. Leveled LSM’s incur significantly more read amplification
than FT indexes both asymptotically and in practice. Very few applications should
use leveled LSM’s.

• Size-tiered LSM’s can provide much lower write amplification than Leveled LSM’s
or FT indexes at a horrible cost for range query and pretty bad space amplification.
A workload that performs few reads and is not sensitive to space amplification, but is
very sensitive to write costs might benefit from size-tiered LSM’s. In my experience,
it is an unusual application that is so short on write bandwidth that it can gladly give
up a factor of 13 on read amplification.
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Data Structure Write Amp Read Amp Read Amp Space Amp
(range) (range)

(worst case) (cold cache) (warm)
B Tree O(B) O(logB N/B) 1 1.33
FT index O(k logk N/B) O(logk N/B) 1 negligible
LSM leveled O(k logk N/B) O((log2 N/B)/ logk) 3 2 (file-per-run)

1.1 (many files)
LSM size-tiered O(logk N/B) O(k(log2 N/B)/ logk) 13 3

Figure 8: A summary of the write amplification, read amplification for range queries, and
space amplification of the various schemes.

• B trees have much higher write amplification than the other alternatives, and are
good at read amplification, and pretty good at space amplification. Very few appli-
cations should use B trees.

The data structure used in a database is only part of the decision. Features such as
MVCC, transactions with ACID recovery and two-phase distributed commit, backup, and
compression often dominate the engineering challenges of these systems and often de-
termine whether the database actually meets the needs of an application. For example,
compression works very well for FT indexes, and can dramatically reduce write ampli-
fication. Tokutek’s implementation of fractal tree indexes provides MVCC, transactions,
distributed transactions, backup, and compression.
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